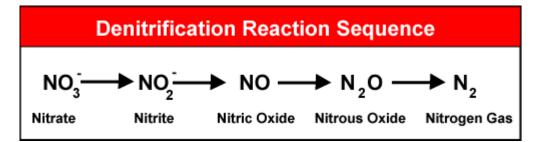
# **Advanced Denitrifying Bioreactor Project**

# Prototype Design and Testing


Hunter Burnham (Lead), Nathalie Hendricks, Mia Sosa, Dr. John Skardon (PI) 24 March 2016 Funding Provided US EPA P3 Grant

#### Acknowledgements to the CSUMB Bioreactor Team

| Students          | Faculty                                   |
|-------------------|-------------------------------------------|
| Justin Vivar      | Arlene Haffa, Ph.D. (Microbiology mentor) |
| Teresa Munoz      | John Silveus, M.S. (Hydraulics mentor)    |
| Alexandra Ball    |                                           |
| Zane Mortensen    |                                           |
| California Biordi |                                           |
| Alixandra Rachman |                                           |
|                   |                                           |

# Basic Theory- Reduction of Nitrate to N<sub>2</sub>

- In a compact bioreactor, we attempt to isolate facultative denitrifying bacteria from local sloughs and ponds, and grow large amounts of bacteria on a support matrix (plastic, ceramics, sand)
- Some very common denitrifiying bacteria, such as P. stutzeri, can complete the the entire process shown below <u>without release of substantial</u> <u>intermediate gases (GHGs)</u>



Source: http://wwwbrr.cr.usgs.gov/projects/EC\_biogeochemistry/Cape.htm

#### Nitrate In Agricultural Tailwater- A Global Problem

- Nutrient runoff is the largest unsolved water pollution problem globally
- Salinas river is one of the most impacted rivers in the US
- Currently, farmers and growers have no cost effective solution
- Existing solutions are either too big and slow (woodchip bioreactors) or simply too expensive for farmers (ion exchange)
- But denitrification is a well established and cost effective process in other industries.
- So what's the problem?

#### Market Failure and Government Failure?

- If many industries can successfully denitrify wastewater, then the agriculture problem is not a technology problem but an innovation failure or "market failure"
- Fining the growers, after we've all benefitted from California agriculture for decades, is not the solution
- Rather, we need entrepreneurs to enter into this problem with support from the growers and "regulators"
- The CSUMB bioreactor team is developing a solution that can be transferred to the private sector

## Our Solution- Compact, Denitrifying Bioreactor

- \*Denitrification rate (DNR) > 600 grams of NO<sub>3</sub>-N per cubic-day, enables a very small footprint
- Small footprint allows farmers to place the reactor as close to the source of tail-water as possible
- Another benefit of close placement- higher denitrification rates at higher concentrations
- A 10 gallon-per-minute system (< 200 ft<sup>2</sup>) can be placed almost anywhere on the map (right)



Utility scale denitrification systems routinely achieve DNR > 2kg NO<sub>3</sub>-N per cubic-day

#### Major Performance Goals for Prototype

- Denitrification rate > 600 g/m<sup>3</sup>-d @ 25 mg/L of NO<sub>3</sub>-N in wastewater
  - Affects the footprint, high DNR allows flexible placement, consistent with other small aquaculture systems
- Portable/Temporary
  - Ability to transport to grower site for weekly, monthly demonstrations
- Maintainance- daily reactor cleaing (air sparging), refill carbon supply periodically
- Grower cost: < \$0.50 per 1000 gallons treated

#### **Business Models**

(assumes a new private company has been formed)

- Smaller growers- grow pays monthly fee for denitrification service
- Larger growers- pay for design, install, and grower operates
- Public-Private- county/state and grower share cost.

## **Project Design Features**

- Bacteria- Facultative denitrifying anaerobes, isolated from local slough or holding ponds.
- Bacteria Support Matrix- plastic "bio-balls" with very high specific surface area (area/volume)
- External carbon injection system with industry standard control system
- Design- vertical up-flow, moving bed
- Wireless/Cellular communication

#### **Denitrifying Prototype Bioreactor**



# Denitrification Rate- A Key Performance Indicator

$$DNR = \Delta Nx \frac{FR}{Vbed}$$

- Where:
- DNR- denitrification rate, in grams of NO<sub>3</sub>-N removed/day-m<sup>3</sup> bed volume
- $\Delta N$  = change in concentration from inlet to outlet, in grams NO<sub>3</sub>-N/m<sup>3</sup>
- FR= Flow rate, in cubic meters per day
- Vbed= denitrification bed volume, in cubic meters

# **Initial Prototype**

- Flow rate- 1-2 GPM
- Reactor Design- 4 x 55 Gallon drums, connected in series
- Bacteria Source- isolated locally (see Van Niel and Allen)
- Unpressurized
- Simulated ag runoff- by adding potassium nitrate to tap water
- Carbon Source- denatured alcohol (ETOH + MEOH)
- Hydraulic Residence Time- < 2 Hours
- Carbon: Nitrogen ratio by mass- 1:1 to 2:1
- Expected NO3 removal- 90%



### Support Matrix for V1 Reactor

Plastic Bioballs<sup>™</sup>

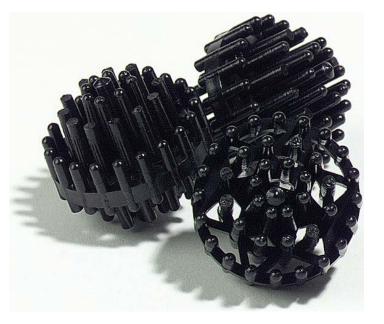



Image Source: Drs Foster and Smith Website

# **Initial Prototype Results**

- Uneven biofilm coverage of bio-balls
- Aspect ratio (H/W) too low to enable good mixing
- Good denitrification
- Dissolved O2 consistently under 1ppm
- pH steady at 7.5 entire period



# V2 Improvements (in process)

Single Denitrification Tank Reactor

Simplifies connections, better flow/mixing via diffuser, higher aspect ratio (H/W)

Chemical metering pump for external carbon supply

Rola-Chem

Support Matrix- Kaldnes K1

Neutrally buoyant, Non locking, Greater surface, more movement

PWM speed control for pump

Can evaluate different residence times

# Kaldnes K1 Media (Support Matrix)

- Much higher specific surface area (area/volume)more bacteria per unit volume
- Neutrally buoyant
- Ideal for moving bed style bioreactors (does not "lock"
  - "Rolling action" enable higher contact time between waste water and the support matrix

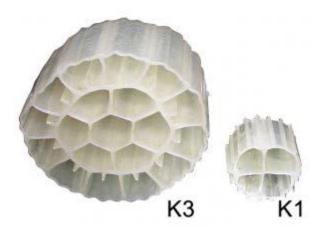



Image source:

http://www.inmotionaquatics.com/Kaldne s-K1-and-K3-Media-Evolution-Aqua-sc-11.html

# V3 Prototype (June July)

- Add flow measurement
- Start/stop
- Datalog all parameters (Arduino, LabVIEW or Raspbeery Pi)
- Cellular or WIFI operation of reactor from office

#### Acknowledgements

- US EPA Team
- Strawberry Commission
- Grower Shipper Association
- Farm Board

#### Thank You

contact: John Skardon CSUMB TEL 831-204-8140 EMAIL: jskardon@csumb.edu